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Predicting and characterizing data sequences from structure-variable systems
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In principle, all the natural systems such as biclogical, ecological, and economical systems are
structure-variable systems (in which some environment parameters are not fixed). In this paper we
show that data sequences from many structure-variable systems are short-term predictable. We also
argue regarding how to characterize the data sequences from structure-variable systems.

PACS number(s): 05.45.+b

In the past two decades, there has been rapid progress
in understanding deterministic chaos, not only in the-
oretical modeling [1], but also in experimental testing
[2]. Since the pioneering paper [3] and an embedding
theorem due to Takens [4], it has become widely known
that the current state of the finite-dimensional dynami-
cal systems can be identified using a vector of time series
measurements. In the proxy state space consisting of the
delay-coordinate vector, analysis of the topological prop-
erties of the chaotic attractor underlying the time series
is performed. The application of this idea includes noise
filtering [5], control of unstable periodic orbits solely from
a time series record [6], and prediction of the chaotic time
series [7,8].

Up to now, all the studies and the applications have
been restricted to the chaotic dynamics of structure-
invariable systems (SIS’s) (in which all the parameters
are fixed) or assumed structure-invariable systems [9—
11]. However, many natural systems such as biological,
ecological, and economical systems belong to structure-
variable systems (SVS’s) (in which some parameters are
not fixed), they have developed into other ones before
they reach equilibrium states. The stock system, the
financial expenditure system for one country, the seis-
mic system, and the climatic system are examples since
the environments of these systems change rather rapidly
before they settle down at some asymptotic states. Re-
markably, it was found recently [12] that the Chinese
national financial expenditure from 1973 to 1992 can be
well predicted based on the records in 1953-1972 by a
nonlinear prediction algorithm [8]. It is well known that
the Chinese economical environment had been changed
greatly from 1953 to 1992. One may ask a question, why
does a SIS prediction algorithm work so well? The first
motivation of this paper is to present an approach to an-
swer this question, and then the numerical results in [12]
can be understood. We will use the concept of the de-
veloping diagram [13] to illustrate our idea. It is found
that every SVS can be transferred into a corresponding
higher-dimensional SIS by adding some new variables so
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that the nonlinear SIS prediction algorithms can work
well for SVS’s. Moreover, in the last decade, there has
been much work trying to apply the chaotic dynamics to
many natural systems [e.g., 9-11]. The correlation di-
mensions (D3) and the largest Lyapunov exponents ()
are calculated with the familiar algorithms for chaotic
attractors in SIS’s, and the existence of those quantities
has been considered as evidence of chaotic dynamics in
those natural systems. In principle, many of these natu-
ral systems are SVS’s. Only when the environment pa-
rameters change sufficiently slowly can a theory of SIS’s
be a good approximate tool to analyze the data sequences
from them. However, there are no asymptotic limit sets
in the SVS’s. Consequently, it is inconvenient to take the
dynamics of the SVS’s as chaotic dynamics although the
real dynamics still reveals sensitivity to initial conditions.
Even in these SIS’s, transferred from SVS’s, there are still
no chaotic attractors at all (discussed below). An argu-
ment about the physical meaning for these calculated D,
and A is the second motivation of this paper.

Let us begin with a typical developing digram [13]
shown in Fig. 1 for the logistic map

Tny1 = [, 20) =1 — /m"vzw (1)

in the parameter interval y € [1.6,1.8]. In the figure, we
cover the parameter range p € [1.6,1.8] by small steps
dp = 107° (as that usually used in bifurcation diagrams).
At p = 1.6, an initial value of z¢ is chosen, which may
be a point on the attractor. We iterate Eq. (1) only once
with 4 = 1.6 and obtain a point ;. In the successive pa-
rameter p = 1.6 +0u, an iterate x, of Eq. (1) is obtained
starting from xz; by considering the continuously evolu-
tionary process of natural systems. We repeat it until
we reach p = 1.8 and draw all the pairs (1.6, zo), (1.6
+ 6p, 1), (1.6 + 26p, z3), ... in a figure. In this way
we get the developing diagram in £ — p coordinates as
shown in Fig. 1. In the process, no point is thrown away
as transient. This developing diagram reflects the evo-
lutionary process of a SVS modeled by the logistic map
with a definite rapidity (the parameter step du reflects
the rapidity of evolutionary process of the dynamical sys-
tem). It can be taken as the simplest example of SVS’s.
In [13], the basic properties of this developing diagram
such as the discontinuity of period-doubling bifurcations,
the time arrow [14], and a brief comparison with those of
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FIG. 1. The developing diagram of the logistic map in the
parameter interval p € [1.6,1.8] with §u = 107°.

the bifurcation diagram had been discussed.

Now we test the short-term predictability for the above
developing diagram. Considering that there is a data se-
quence Ti,Z3, ... from a SIS, according to Takens’ the-
orem [4], there exists a function F such that
) 1571.—7'), (2)

Tn = F(zn—m‘r’ Tn—(m—1)1y- -

where m is the embedding dimension and 7 is the time
delay. The problem of predictability is how to find a
good estimate of F' based on the past history of z,,
on which various techniques of nonlinear deterministic
prediction have been developed. In this paper, we will
use the prediction algorithm [8] which is based on the
wavelet analysis and the neural networks [15]. This pre-
diction algorithm has succeeded in testing the time series
from many dynamical models such as the Ikeda map,
the Lorenz equations, the Ushiki map, the Mackey-Glass
differential-delay equations, etc., for fixed parameters [8].

Suppose ¥(z) (x € R™) is a wavelet function, which
can be thought of as a band-pass function. Define

N
g9(z) = > wap(DiRi(z — b)) +3, € R",

i=1

where the b;’s are arbitrary translation vectors, the D;’s
are diagonal matrices built from arbitrary dilation vec-
tors [i.e., D; =diag(d;), di = (d1i,dai,...,dn:) is the di-
lation vector|, the R;’s are rotation matrices, which are
used to compensate for the orientation selective nature of
the dilations, the parameter g is introduced to help deal-
ing with nonzero mean functions on finite domains [since
the wavelet () is zero mean], an, the w; are weight co-
efficients. It had been proved [15] that for any function
in L?(R™), there exist some g(z) with proper parame-
ters such that the function can be approximated by g(z).
Our prediction algorithm [8] was proposed by determin-
ing the free parameters of g(z) such that g(z) can be a
good approximation to the function F in Eq. (2). And
the wavelet function % (y) was chosen explicitly as
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Y(y) = w(y)w(yz) - - w(Ym)
with [15]

oy ¥
w(y:) = (1—yjle 7,

where y;,2=1,2,...
structed vectors.

For the data sequences zg, 1, ... from the developing
diagram in Fig. 1, we fix the embedding dimension m = 2
(will be discussed later), and predict one step ahead. We
take arbitrary 2000 data points in succession from the
developing diagram in Fig. 1. The first 500 points are
taken as input to determine the parameters in the pre-
diction algorithm; then we use the next 1500 points as
the test points of prediction. All of our numerical results
are very satisfactory. In Figs. 2 and 3 we show typi-
cal prediction results and the absolute prediction errors
for the parameter range [1.74, 1.76]. It is remarkable to
find that the algorithm works so well that it can even
predict the period 3 motion. Similar observations have
been obtained for different selected §u as well as in other
ranges of parameters. We emphasize that the developing
structure with variable parameters of the logistic map
(which is a SVS) including its periodic motion and its
period-doubling counterparts can be well predicted with
a sophisticated prediction algorithm for SIS’s.

In fact, the developing diagram shown in Fig. 1 is
a trajectory in the phase portrait of the following two-
dimensional (2D) map

,m are m components of the recon-

Tp+1 = f(ﬂn, mn) =1- /Lnxfn
3)

Bnt1 = fn + o,

from a 2D initial point (z,p) = (zo,1.6). The only pa-
rameter in this 2D map is du. Once the parameter §u is
fixed, the developing structure of the logistic map shown
in Fig. 1 can be described by a 2D SIS (2). As has been
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FIG. 2. One-step-ahead prediction results for the devel-
oping structure of the logistic map shown in Fig. 1 with
p € [1.74,1.76]. The crosses are the true data points and the
diamonds are the corresponding predictive ones. Only one
point in each 20 data points is plotted.
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FIG. 3. Prediction error for Fig. 2. zr and zp are the true
and the corresponding predictive values, respectively.

shown above, we have succeeded in predicting the devel-
oping structure of the logistic map shown in Fig. 1 with
a 2D prediction algorithm (m=2) for SIS’s.

Now we arrive at the first conclusion of this paper. A
SVS can be discussed in its variable-parameter space in
which the SVS is transferred into a higher-dimensional
SIS so that the data sequence is short-term predictable.
We have checked this idea for many other dynamical sys-
tems. In Fig. 4 we show our prediction results for the
developing structure of the Hénon map

Tpt1 =1 — a,:l;,z1 + Yn, )

Yn+1 = bw'rn

with parameters (a,b) change simultaneously as

|er — xpl

1.52 1.525 1.53

FIG. 4. Prediction error from the developing structure
of the Hénon map with its parameters changes nonlinearly
shown in Eq. (5).

3
An+1 = Gp + an(say

(5)
bri1 = by + andb,

where ag =1.52, bg=0.1, da = 2x 1078, and 6b = 3x 1076,
Our prediction algorithm still works very well.

From the above discussion we can understand the nu-
merical result in [12] for the Chinese national financial
expenditure from 1953 to 1992 and other economic data
series. Since the natural environment and the political
structure had not changed much from 1953 to 1992, the
evolutionary process of the economical environment in
this period might be governed by some equations similar
to Eq. (5) (though we might not know exactly what they
are). In this variable-parameter space the system is a SIS
so that the data sequence might be well predicted. With
this idea, we have successfully tested some seismological
data in China recently [16].

Now we come to the second point in this article. How
could a data sequence from a SVS be characterized? So
far, there are many sophisticated ways of characterizing
chaotic attractors, among which the Lyapunov exponents
and the correlation dimensions are widely used. In the
past decade, these techniques have been applied to the
data sequences from many natural systems. D, and A
are calculated and their existence has been considered
as evidence of chaotic dynamics in those natural systems
le.g., 9-11]. In fact, many of these natural systems are
SVS’s. Only when the environment parameters change
sufficiently slowly, can these techniques be approximately
used to analyze the data sequences from these natural
systems. A SVS does not exhibit chaotic attractor since
there is no asymptotic state. For these SIS’s from SVS
in the variable-parameter space as Eq. (3), there is no
unstable periodic orbit in their asymptotic state since
the parameter p always increases. As a result, it seems
inconvenient to apply the ways of characterizing chaotic
attractors to analyze the data sequences from SVS’s, al-
though these data sequences might be predictable.

However, A and D, have been calculated for the data
sequences for some natural systems [e.g., 9-11] by us-
ing the usual algorithms for chaotic attractors. What do
these calculated A and D, mean? Are they the evidence
that the environment parameters for these natural sys-
tems change so slowly that they can be approximately
taken as SIS’s? Could the existence of those quantities
be taken as evidence of chaotic dynamics in those natu-
ral systems? In order to answer these questions we have
calculated the values of A and D, for 10000 data se-
quences for the developing structure of the Hénon map
in Egs. (4) and (5) with the algorithms from [17,18].
They exist and D>=1.254+0.1 and A=0.294+0.002. We
also have computed these quantities for other develop-
ing parameter ranges of the Hénon map and the logistic
map. From these results, it is clear that the existence
of the calculated A and D, does not represent that the
system evolves so slowly that it can be approximated by
a SIS. However, the positive value of )\ is consistent with
the sensitivity to initial conditions of these nonlinear dy-
namical systems in our calculations and a little smaller
than the largest Lyapunov exponents for the dynamical
systems with fixed parameters in the developing param-



eter range except for periodic orbits, and the correlation
dimensions are greater than those for the fixed parame-
ters of which the above developing diagram sweeps out
[For the Hénon map, D3=1.03+0.02, A=0.353+0.003 for
(a,b)=(1.52, 0.1) and D,=1.0740.01, A=0.3210.001 for
(a,b)=(1.5955, 0.14671), corresponding to the first and
the last datum, respectively]. The physical meaning for
these calculated quantities and how to characterize the
data sequences from SVS still need to be investigated,
which will be presented in an extended paper.

It should be noted that a data sequence from SVS can
be easily confused with a time series of a chaotic attractor
with noise. Figure 5 shows the plotting for successive
ZTn+1 to z, for the same data sequence used above for
calculating D, and A. This plotting looks very similar to
what one would get for a time series of a chaotic attractor
with noise. How to distinguish a data sequence between
that from a SVS and from a chaotic attractor with or
without noise is still undertaken.

To conclude, we will say that the data sequences from
some SVS’s are predictable with a nonlinear SIS predic-
tion algorithm although the SVS’s do not exhibit chaotic
attractors. This result encourages us to apply the predic-
tion algorithm to predict the data sequences from natural
systems no matter their environment parameters change
slowly or rapidly. However, there are still some theoreti-
cal problems needed to be clarified if one wants to apply
the usual ways of characterizing the chaotic attractors
to characterize the data sequences from SVS’s otherwise
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FIG. 5. The plotting for successive 41 to z, for the first
10000 data from Eq. (4).

masleading results might be obtained. Finally, we note
that all the discussions in this article can be extended to
discuss the dynamical systems described by differential
or difference-differential equations.
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